INDIAN STATISTICAL INSTITUTE

Semester Examination, Second Semester 2020-2021

Algebraic Geometry, M.Math II nd year
 Total Marks 70.

k is an algebraically closed field and by a variety we mean a quasi-projective k-variety.

1 Basic Theory

1. Find the multiple points, and the tangent lines at the multiple points, for each of the following curves:
(a) $Y^{3}-Y^{2}+X^{3}-X^{2}+3 X Y^{2}+3 X^{2} Y+2 X Y$; [6]
(b) $X^{4}+Y^{4}-X^{2} Y^{2}$. [6]
2. Show that an irreducible curve in \mathbb{P}_{k}^{2} has at most finitely many singular points. [8]
3. Show that any nonsingular cubic curve C in \mathbb{P}_{k}^{2} is equivalent to the cubic defined by

$$
y^{2} z=x(x-z)(x-\lambda z)
$$

for some $\lambda \in k \backslash\{0,1\}$. [10]
4. For X and T two k-varieties, let

$$
X(T):=\{f: T \rightarrow X \mid f \text { morphism }\} .
$$

If $f: X \rightarrow Y$ is a morphism of varieties, define $f_{T}: X(T) \rightarrow Y(T)$ by the formula $f_{T}(g)=f \circ g$.
(a) Show that f is an isomorphism if and only if f_{T} is a bijection for every variety T. [5]
(b) Show that intersection of two affine open subvarieties U, V of a variety X is again an affine variety. [5]
(c) Show that $f: X \rightarrow Y$ is an isomorphism if and only if f_{T} is a bijection for all affine varieties T. [7]
5. (Local ring of a subvariety) Let $Y \subset X$ be a subvariety.
(a) Let $O_{Y, X}$ be the set of equivalence classes $\langle U, f\rangle$ where $U \subset X$ is open with $U \cap Y$ non empty, and f is a regular function on U. We say that $<U, f>\sim<V, g>$ if $f=g$ on $U \cap V$. Show that $O_{Y, X}$ is a local ring. Show that for any irreducible curve C in \mathbb{A}^{2}, the local ring $O_{C, \mathbb{A}^{2}}$ is a D.V.R. $[6+5]$
(b) Let $\kappa(Y, X)$ be the set of equivalence classes $<U \cap Y, f>$ where $U \subset X$ is open with $U \cap Y$ non empty, and f is a regular function on $U \cap Y$. We say that $<U \cap Y, f>\sim<V \cap Y, g>$ if $f=g$ on $U \cap V \cap Y$. Show that the residue field of $O_{Y, X}$ is isomorphic to $\kappa(Y, X)$. [5]
(c) Construct an example of a two dimensional variety X and a subvariety $Y \subset X$ of dimension 1, such that $O_{Y, X}$ is not a D.V.R. [7]

