<u>INDIAN STATISTICAL INSTITUTE</u> Semester Examination, Second Semester 2020-2021 <u>Algebraic Geometry, M.Math II nd year</u> <u>Total Marks 70.</u>

k is an algebraically closed field and by a variety we mean a quasi-projective k-variety.

1 Basic Theory

- 1. Find the multiple points, and the tangent lines at the multiple points, for each of the following curves:
 - (a) $Y^3 Y^2 + X^3 X^2 + 3XY^2 + 3X^2Y + 2XY$; [6] (b) $X^4 + Y^4 - X^2Y^2$. [6]
- 2. Show that an irreducible curve in \mathbb{P}^2_k has at most finitely many singular points. [8]
- 3. Show that any nonsingular cubic curve C in \mathbb{P}^2_k is equivalent to the cubic defined by

$$y^2 z = x(x-z)(x-\lambda z),$$

for some $\lambda \in k \setminus \{0, 1\}$. [10]

4. For X and T two k-varieties, let

$$X(T) := \{f: T \to X | f \text{ morphism}\}.$$

If $f: X \to Y$ is a morphism of varieties , define $f_T: X(T) \to Y(T)$ by the formula $f_T(g) = f \circ g$.

- (a) Show that f is an isomorphism if and only if f_T is a bijection for every variety T. [5]
- (b) Show that intersection of two affine open subvarieties U, V of a variety X is again an affine variety. [5]
- (c) Show that $f: X \to Y$ is an isomorphism if and only if f_T is a bijection for all affine varieties T. [7]
- 5. (Local ring of a subvariety) Let $Y \subset X$ be a subvariety.
 - (a) Let $O_{Y,X}$ be the set of equivalence classes $\langle U, f \rangle$ where $U \subset X$ is open with $U \cap Y$ non empty, and f is a regular function on U. We say that $\langle U, f \rangle \sim \langle V, g \rangle$ if f = g on $U \cap V$. Show that $O_{Y,X}$ is a local ring. Show that for any irreducible curve C in \mathbb{A}^2 , the local ring O_{C,\mathbb{A}^2} is a D.V.R. [6+5]

- (b) Let $\kappa(Y, X)$ be the set of equivalence classes $\langle U \cap Y, f \rangle$ where $U \subset X$ is open with $U \cap Y$ non empty, and f is a regular function on $U \cap Y$. We say that $\langle U \cap Y, f \rangle \sim \langle V \cap Y, g \rangle$ if f = g on $U \cap V \cap Y$. Show that the residue field of $O_{Y,X}$ is isomorphic to $\kappa(Y, X)$. [5]
- (c) Construct an example of a two dimensional variety X and a subvariety $Y \subset X$ of dimension 1, such that $O_{Y,X}$ is not a D.V.R. [7]